Assessment and Treatment of Severe Problem Behavior

Joanna Lomas Mevers, PhD, BCBA-D
Program Manager-Severe Behavior Clinics
Assistant Professor
Division of Autism and Related Disorders
Emory School of Medicine

Introduction to Problem Behavior in Children with ASD

Autism & Problem Behavior

- Problem behavior is not a core symptom of autism

- What are the core symptoms of autism?

Core Symptoms of Autism

- Autism Spectrum Disorder
 - Deficits in Social Communication and Interactions
 - Restricted and Repetitive Patterns of Behavior and/or Interests

 Subtypes
 - With Cognitive Impairment
 - With Language Impairment

How ASD relates to Problem Behavior

<table>
<thead>
<tr>
<th>Poor Peer Relations</th>
<th>Problem Behavior to Avoid Social Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difficulty Asking for a Break</td>
<td>Problem Behavior Related to Demands</td>
</tr>
<tr>
<td>Repetitive Interests</td>
<td>Problem Behavior When these Interests are Interrupted</td>
</tr>
<tr>
<td>Stereotyped Motor Behaviors</td>
<td>Repetitive Behaviors can become Self-Injurious</td>
</tr>
<tr>
<td>Stereotyped Verbal Behaviors</td>
<td>Can become Disruptive to Other Students</td>
</tr>
</tbody>
</table>

Problem Behavior: What are we talking about

- Aggression (hitting, kicking, biting, etc.)
- Self-injurious behavior (head hitting, biting self, hand mouthing)
- Disruption (crying, yelling, squatting)
- Property Destruction (throwing materials, breaking things)
- Elopement (running away or leaving supervision)
- Stereotypy (hand flapping, body rocking, spinning objects)
- Pica (eating inedible objects)
- Rumination (regurgitating food)
Factors Sometimes Used to Determine Treatment

• Diagnosis
 • Example: Autism vs Down Syndrome

• Topography
 • Hitting other vs disruptive behavior

• Function
 • Access to attention vs escape from work

Vignette: Tim

• Tim has autism
• He doesn’t have much communication
• Tim hits his parent
• Sometimes he hits them when they make him turn off the television
• Sometimes he hits them when they tell him he has to brush his teeth

Relationship between Diagnosis and Treatment

• Not the same as medicine
 • In medicine, Diagnosis X = Treatment Y
 • Example: if you have a particular type of cancer then you need a certain kind of chemotherapy
 • Treatments for problem behavior do not entirely depend on diagnosis
 • Different treatments are often developed for kids with the same diagnosis
Relationship between Topography and Treatment

- Topography is less relevant than most people think
- Topographically prescribed treatments:
 - Problem behavior X = treatment Y
 - Example: biting = time out
 - Every time a child bites you should put him in time out

Factors Sometimes Used to Determine Treatment

- Diagnosis
- Topography
- Function

Function of Problem Behavior

Function = the reinforcers that maintain a response = Why problem behavior occurs

- **Function X**
 - **Treatment Y**
 - **Attention Function**
 - **Ignoring**

Cycle of Problem Behavior

- **Mom asks Tim to brush his teeth**
- **Tim stops hitting**
- **Tim hits mom**
- **Tim learns that hitting gets him out of things**
- **Mom stops asking Tim to brush his teeth**

Vignette: Tim

- **Topographically Prescribed Treatment:**
 - Hitting = time out
 - When Tim hits his parents after his parents turn off the television he goes to time out
 - “When I hit, not only do I not get to watch television, I don’t get to do anything!”
 - When Tim hits his parents after being told to brush his teeth he goes to time out
 - “When I hit I don’t have to brush my teeth. YAY!!!”

- **Function-based Treatment:**
 - Hitting maintained by access to preferred activities = time out
 - When Tim hits his parents after his parents turn off the television he goes to time out
 - “When I hit, not only do I not get to watch television, I don’t get to do anything!”
 - When Tim hits his parents after being told to brush his teeth they follow through and make sure he brushes his teeth
 - “When I hit I still have to brush my teeth”
How to Identify the Function of Problem Behavior

- Functional Behavior Assessment: Procedures to identify the function of problem behavior

- Major categories of FBA:
 1. Non Experimental (2 Types)
 - Indirect: no observation (questionnaires, interviews)
 - Descriptive: passive observation
 2. Experimental Functional Analysis (Analog)
 - Direct observation controlling what happens before and after problem behavior (antecedents and consequences)

Factors that Affect Function

- Antecedents (what happens before the behavior)
- Consequences (what happens after the behavior)

Communication and Problem Behavior

- Challenging behavior can be a very effective way for individuals to communicate
- Challenging behavior usually serves a purpose for the individual
- Functional Analysis is an assessment to determine what the individual is trying to communicate with problem behavior

“Experimental” Functional Analysis

- “Experimental” or “Analog” Functional Analysis
 - Experimental: environment is changed so only one thing changes at a time
 - Analog: analog to the natural environment
- The “gold-standard” for functional behavioral assessments
 - Treatments based on functional analyses are more effective than those that are not

"Attention", "Toy Play", "Tangible", "Escape", "Ignore"

"Attention", "Toy Play", "Tangible", "Escape", "Ignore"
Treatment of Severe Problem Behavior

Common Treatments

- **Functional Communication Training**
 - Teaching alternative way to access the functional reinforcer via communication (e.g., teach child to ask for favorite toy)
 - *Example FCT*

 [Carr and Durrant, 1985]

- **Differential Reinforcement of Alternative Behaviors**
 - Reinforcement of a more appropriate replacement behavior (e.g., compliance)
 - *Example DRA Compliance*

 [Petscher, Rey, & Bailey, 2009]

- **Differential Reinforcement of Other Behavior**
 - Reinforcement is delivered when the target behavior has not occurred for a specific period of time (e.g., child has to go a set amount of time without engaging in the target behavior to receive reinforcement)
 - **Token Economics**
 - Earn tokens that are exchangeable for back-up reinforcers

 [Homer and Peterson, 1980]
 [Hackenburg, 2009]

Extinction

- No longer providing reinforcement for a behavior
 - Extinction of responses maintained by...
 - **Positive reinforcement**: do not allow the child to have the item, food, activity, or interaction
 - *Example Tangible Extinction*
 - **Negative reinforcement**: do not allow the child to get out of doing a task or avoid something he/she doesn’t like
 - *Example Escape Extinction*

 [Lerman, Iwata, & Wallace, 1999]

Side Effects of Extinction

- Extinction bursts
 - Around 40% of the time there will be a temporary increase in the intensity or variability of responding before there is a decrease
 - Potential for intermittent schedules of reinforcement
 - Reinforcing some but not all responses will result in higher rate behaviors that are even harder to extinguish
 - Problem behavior temporarily comes back

 [Lerman, Iwata, & Wallace, 1999]
Example of FCT

Next Steps

- Teaching the individual to tolerate when they can’t have what they want
- Generalization to the natural environment (e.g., home and community settings)
- Caregiver Training

Teaching the individual to tolerate not getting what they want

- Discriminative Stimuli
 - Teach using a stimulus when reinforcement is and is not available
- Schedule Thinning
 - Increasing the number of responses or the duration before reinforcement can be accessed

Increasing Social Validity

- Generalization: spreading the effects of reinforcement across stimulus conditions
 - Across people
 - Across settings
 - To additional problem behaviors
- Expand the number/variety of alternative behaviors: to establish access to a greater variety of reinforcers and a larger community of listeners

Outcomes for Behavioral Treatments

- Effect size of behavioral intervention for pica\(^1\):

 1.8

- Effect size of behavioral intervention for elopement\(^2\):

 2.1

\(^1\)Call, Simeone, Lomas Mevers, & Alvarez, 2015

\(^2\)Call, Alvarez, & Lomas Mevers, under review